1. Идеальный газ массой m=6,0 кг находится в баллоне вместимостью V=5,0 м³. Если средняя квадратичная скорость молекул газа $\langle v_{\rm KB} \rangle = 700$ м/с, то его давление p на стенки баллона равно:

2. Число N_1 атомов титана $\left(M_1=48\ \frac{\Gamma}{_{\rm MOJIb}}\right)$ имеет массу $m_1=2\ \Gamma,\ N_2$ атомов углерода $\left(M_2=12\ \frac{\Gamma}{_{\rm MOJIb}}\right)$ имеет массу $m_2=1\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:

1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

3. Число N_1 атомов лития $\left(M_1=7\frac{\Gamma}{_{
m MOJIb}}\right)$ имеет массу $m_1=4$ г, N_2 атомов кремния $\left(M_2=28\frac{\Gamma}{_{
m MOJIb}}\right)$ имеет массу $m_2=1$ г. Отношение $\frac{N_1}{N_2}$ равно:

1) $\frac{1}{16}$ 2) $\frac{1}{4}$ 3) 1 4) 4 5) 16

4. Число N_1 атомов углерода $\left(M_1=12\ \frac{\Gamma}{_{
m MOЛЬ}}\right)$ имеет массу $m_1=4\ \Gamma,\ N_2$ атомов магния $\left(M_2=24\ \frac{\Gamma}{_{
m MОЛЬ}}\right)$ имеет массу $m_2=1\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:

1) $\frac{1}{8}$ 2) $\frac{1}{4}$ 3) 1 4) 4 5) 8

5. Число N_1 атомов железа $\left(M_1=56\ \frac{\Gamma}{{
m моль}}\right)$ имеет массу $m_1=4\ \Gamma,\ N_2$ атомов лития $\left(M_2=7\ \frac{\Gamma}{{
m моль}}\right)$ имеет массу $m_2=1\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:

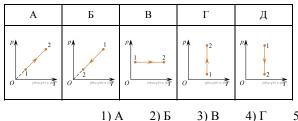
1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

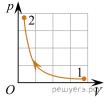
6. Число N_1 атомов лития $\left(M_1=7\ \frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_1=1\ \Gamma,\,N_2$ атомов кремния $\left(M_2=28\ \frac{\Gamma}{\text{МОЛЬ}}\right)$ имеет массу $m_2=4\ \Gamma.$ Отношение $\frac{N_1}{N_2}$ равно:

1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $< v_{\kappa g} > = 500$ м/с,то плотность ρ газа равна:

1) 0,40 kg/m³ 2) 0,60 kg/m³ 3) 0,75 kg/m³ 4) 0,83 kg/m³ 5) 1,2 kg/m³


8. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,32\cdot 10^5$ Па. Если плотность газа $\rho=1,10$ кг/м³, то средняя квадратичная скорость $< v_{\kappa e}>$ поступательного движения молекул газа равна:


1) 200 m/c 2) 220 m/c 3) 500 m/c 4) 600 m/c 5) 660 m/c

9. В герметично закрытом сосуде находится идеальный газ, давление которого $p=0,48\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $<0_{\kappa g}>=400$ м/с,то плотность ρ газа равна:

1) 0,10 кг/м³ 2) 0,30 кг/м³ 3) 0,36 кг/м³ 4) 0,90 кг/м³ 5) 1,1 кг/м³

10. На графике в координатах (p, V) представлен процесс 1→2 в идеальном газе, количество вещества которого постоянно. В координатах (р, Т) этому процессу соответствует график, обозначенный буквой:

1) A

Б

4) Γ

5) Д

11. Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \,\mathrm{m}^{-3}$, а средняя энергия поступательного движения $\langle E_{\kappa} \rangle = 3.0 \cdot 10^{-21}$ Дж, то давление p газа равно:

1) 45 κΠa

2) 40 κΠa

3) 20 κΠa

4) 15 κΠa

5) 10 κΠa

12. Если давление идеального газа p = 2,0 кПа, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\rm K} \rangle = 1.5 \cdot 10^{-20}$ Дж, то концентрация п молекул газа равна:

1) $1,0\cdot 10^{23}~{\rm m}^{-3}$ 2) $1,5\cdot 10^{23}~{\rm m}^{-3}$ 3) $2,0\cdot 10^{23}~{\rm m}^{-3}$ 4) $1,5\cdot 10^{23}~{\rm m}^{-3}$ 5) $3,0\cdot 10^{23}~{\rm m}^{-3}$

13. Если в объёме V=1,0 дм³ некоторого вещества (M=56 г/моль) содержится $N=8,4\cdot 10^{25}$ молекул, то плотность ρ этого вещества равна:

1) 1,0 Γ/cm^3 2) 2,7 Γ/cm^3 3) 5,6 Γ/cm^3 4) 7,8 Γ/cm^3 5) 8,7 Γ/cm^3

14. Число молекул $N=1,7\cdot 10^{26}$ некоторого вещества ($\rho=8,9$ г/см³, M=64 г/моль) занимает объем V, равный:

1) 0,50 дм^3 2) 1,0 дм^3 3) 1,5 дм^3 4) 2,0 дм^3 5) 3,0 дм^3

15. Сосуд вместимостью V=1,0 дм 3 полностью заполнен водой ($\rho=1,0$ г/ ${\rm cm}^3, M = 18 {\rm г/моль}).$ Число N молекул воды в сосуде равно:

1) $1,8 \cdot 10^{25}$ 2) $2,3 \cdot 10^{25}$ 3) $3,3 \cdot 10^{25}$ 4) $3,6 \cdot 10^{25}$ 5) $6,0 \cdot 10^{25}$

16. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n = 3,1 раза, то относительная влажность φ воздуха равна:

1) 25 %

2) 32 %

3) 45 %

4) 64 %

- **17.** В баллоне находится смесь газов: аргон ($M_1 = 40 \; \frac{\Gamma}{_{
 m MOJIb}}$) и кислород ($M_2 = 32 \; rac{\Gamma}{_{
 m MOJIb}}$). Если парциальное давление аргона в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.
- **18.** В баллоне находится смесь газов: водяной пар ($M_1 = 18 \; \frac{\Gamma}{_{
 m MOJIb}}$) и азот ($M_2 = 28 \frac{\Gamma}{MOJIE}$). Если парциальное давление водяного пара в четыре раза больше парциального давления азота, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$
- **19.** В баллоне находится смесь газов: неон ($M_1 = 20 \; \frac{\Gamma}{
 m MOJIb}$) и аргон ($M_2 = 40 \; rac{\Gamma}{_{
 m MOJIb}}$). Если парциальное давление неона в три раза больше парциального давления аргона, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$

- **20.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{МОЛЬ}}$) и водород ($M_2=2,0$ $\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление углекислого газа в два раза больше парциального давления водорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **21.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{МОЛЬ}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **22.** При нагревании одноатомного идеального газа средняя квадратичная скорость теплового движения его молекул увеличилась в n=1,20 раза. Если начальная температура газа была $t_1=-14$ °C, то конечная температура t_2 газа равна ... °C. Ответ округлите до целого числа.
- **23.** При температуре $t_1=-5$ °C средняя квадратичная скорость поступательного движения молекул идеального газа $<v_{\rm KB1}>=200\,$ м/с. Молекулы этого газа имеют среднюю квадратичную скорость $<v_{\rm KB2}>=280\,$ м/с при температуре t_2 газа, равной ... °C. Ответ округлите до целого числа.
- **24.** При температуре $t_1 = 27$ °C средняя квадратичная скорость поступательного движения молекул идеального газа $\langle v_{\rm KB1} \rangle = 354$ м/с. При температуре $t_2 = 227$ °C молекулы этого газа имеют среднюю квадратичную скорость $\langle v_{\rm KB2} \rangle$, равную ... м/с. Ответ округлите до целого числа.
- **25.** В закрытом сосуде вместимостью $V=1{,}00~{\rm cm}^3$ находится $N=3{,}80\cdot 10^{20}$ молекул идеального газа при давлении $p=536~{\rm k\Pi a}$. Если молярная масса газа $M=32{,}0\frac{\Gamma}{{\rm MOJIb}},$ то средняя квадратичная скорость $\langle \upsilon_{{\rm KB}} \rangle$ поступательного движения молекул этого газа равна... $\frac{{\rm M}}{{\rm c}}$. (Число Авогадро $6{,}02\cdot 10^{23}~{\rm MOJb}^{-1}$.)
- **26.** Если идеальный газ, количество вещества которого постоянно, изохорно нагрели от температуры $t_1 = -33$ °C до температуры $t_2 = 147$ °C, то модуль относительного изменения давления газа $\left|\frac{\Delta p}{p_1}\right|$ равен... %.
- **27.** Почва считается загрязнённой кадмием, если в одном килограмме почвы содержится больше чем $N_0=5.4\cdot10^{18}$ атомов кадмия. В одном аккумуляторе типа AA находится $N_1=3.2\cdot10^{22}$ атомов кадмия. Если весь кадмий из аккумулятора попадёт в почву, то максимальная масса m загрязнённой почвы будет равна:
 - 1) 0,17 T 2) 0,59 T 3) 5,9 T 4) 17 T 5) 59 T